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Abstract

This paper documents the construction of a finite element, called the Sibson element. The shape
function of this element is formed on rectangular grids by C! splines defined on a triangulation of each
subrectangle by dividing it into four subtriangles formed by drawing the diagonals. The splines are
constructed from bivariate cubic polynomials z(z,y) and are written in such a way that they are linear
functions of the values z, 0z/9z, 0z/dy at each node of the rectangle with bivariate polynomial coeffi-
cients up to order three. Conditions are given for the existence of such an element. They are used to
construct the bivariate polynomial coefficients, first for a unit rectangle and then for a general rectangle.
Since the first and second derivatives of these functions are sometimes needed they are also given.

Key Words: bivariate polynomial; rectangular mesh; shape function; Sibson element; spline; triangu-
lation

1 Introduction

When modeling urban and rural terrain data we are usually given points (z;,y;,2;) for ¢ = 1,2,---, not
necessarily uniformly spaced. We would like to construct a C! function to interpolate the given data.
Lawson [5, 6] has pioneered C! interpolation over triangular grids. Han and Schumaker [1] interpolate
data on rectangular grids by C* splines defined on a triangulation of each subrectangle by dividing it into
four subtriangles formed by drawing the diagonals. This subdivision is called the Sibson split. They then
construct the C! spline by using a Bernstein-Bézier form. Recently Lavery [3, 4] has used the Sibson split
on rectangular grids of terrain data but has constructed C' splines over these Sibson elements directly from
bivariate cubic polynomials. He briefly describes the derivation in Lavery [4] but only gives the final formula
for the spline on one of the subtriangles of a subrectangle. It is the object of this report to present the details
involved with the derivation of these bivariate cubic elements.

We begin with a tensor-product grid with nodes x;, for i = 0,1,---,1, and y;, for j = 0,1,---,J, that
form strictly monotonic partitions of the finite real intervals [z, z;] and [yo,y] respectively. The nodes
need not be uniformly spaced. The cubic splines z(x,y) will consist of C* smooth, piecewise cubic Sibson
elements on the tensor-product grid. We also suppose that we are given, by some means, elevation and
derivative values z;j, z{; = 0z/0x, zfj = 0z /0y at each node.

To create a Sibson element on a rectangle (z;,iy1) X (y;,y;+1) we first divide the rectangle into four
triangles by drawing the two diagonals of the rectangle. The Sibson element is a shape function, z(z,y),



that is cubic within each triangle, is C' on the lines separating the four triangles, has 0z/0x that is linear
along the edges * = x; and & = x;41 of the rectangle and has derivative 9z/dy that is linear along the edges
y=vy; and y = y;41.

The report is structured as follows. Section 2 describes the specific sufficient conditions for constructing
a Sibson element on a square with unit length on each side. The necessary equations for determining the
bivariate polynomials in each of the four Sibson triangles of the unit element are derived in Section 3. Solving
for the bivariate polynomial equations is done in Section 4. In Section 5 the coeffficients are written in terms
of the three items of information at each of the corner nodes. In Section 6 the final Sibson element shape
functions are constructed for the unit element. In Section 7 the Sibson element shape functions on the unit
square are transformed to shape functions on an arbitrary scaled rectangle. Finally, in Section 8 the first
and second derivatives of the Sibson element splines are computed.

2 Defining the Conditions for Constructing a Unit Sibson Element

In this section we develop the Sibson element on a reference unit square in order to simplify the construction.
In a later section we will introduce a transformation that will map this element to non-uniform Sibson
elements. Figure 1 shows a unit square with positive r-axis pointing downwards and positive s-axis pointing
to the right. The corners are identified as (0,0), (1,0), (1,1), (0,1). The diagonal line from (0,0) to (1,1) is
given by the equation s = r and that from (1,0) to (0,1) is given by s = r — 1. The triangles are labeled
0,1,2,3, beginning with the triangle identified by the points (0,0),(1,0),(1/2,1/2), and proceeding in a
counterclockwise manner.
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Figure 1: Unit Sibson Element

Cubic polynomials are defined on each triangle in the following two forms. First, for triangles indexed



by k=0, ---,3 the bivariate polynomials are written as

2e(rys) = chord + chr?s + chyrs® + ckys?
+chor? 4 chirs + chys® 4 chor (1)
+§18 + o
and for triangles indexed by k = 1,2 they are written as
a(rys) = o1 =1+ 5y (1=7)(1 =)+ cha(1—r)(1 - 5)° +cf3(1 - 5)°
+ep(1—7)? +eqy (1= 7)(1 =) + cgp(l — 8)° + (L —7) (2)

+egr (1 — 8) + o

These bivariate polynomial forms are selected so that a point (r,s) in triangle 0 is matched with a
symmetric point ((1—r), (1 —s)) in triangle 2 along a line through the point (1/2,1/2). A similar symmetry
holds for triangles 1 and 3. The coefficients cl;q are indexed as follows. The superscript k indexes the triangle
and the subscript pq represents the exponentials in the term c’;qr”sq or c’;q(l —r)P(1—s)d.

These four bivariate cubic polynomials must interpolate at the four corners, must have % that is linear
along the edges ¢ = z; and = x;41 of the rectangle and have derivative 0z/0y that is linear along the
edges y = y; and y = y;41 and satisfy the C! conditions across the diagonals. The interpolation conditions

at the corners are given by the following identities.

ZQ(O, 0) = Z3 (0, 0)
20,0 = 200
T T
20,0 = 0,0
20(1,0) = 2:1(1,0)
20,0 = S0
T T

0z 0z

Z2 (0, 1) = Z3 (0, 1) (3)
200 = P00
T T
2200 = P
S S
21(1,1) = 22(1,1)
“lan = 22wy
0z 0z
—(1,1) = —=(1,1
6s< D 83( x

In the unit cell case, the outer boundary conditions imply that the following partial derivatives, for r €
[0,1], s € [0,1],

01,0
2(1,5)
%200 (@
%10,



are linear. Finally, the polynomials must be C! across the diagonals. Between triangles 0 and 3, along the
line s = r, the following equations must be satisfied.

ZO(T,T) = Zg(’f‘,’l“),
Bzo 823
W( r) = W(T/r‘)a (5)
820 02’3
g( ) ) = E( 9 )

zi(r,r) = z(r,7),
821 822
) ( ) ) = W(T? T)a (6)
821 02’2
p) ( ) ) = E( ) )
Between triangles 0 and 1, along the line s =1 —r,
20(r,1—7r) = =z(r,1—r),
320 - 321
W(r, 1—-r) = o (r,1—r), (7)
820 o 02’1
g(’l",l*’r) g(r,l—r).
Finally, between triangles 2 and 3, along the line s =1 —r,
zo(r,1—7r) = 2z3(r,1—r),
322 - 323
W(r, 1—-r) = e (r,1—r), (8)
822 - 32’3
a(’l",lf’r) = E(r,l—r).

All of these conditions will produce the necessary equations that must be satisfied by the forty unknown
coefficients. In the next section we will develop these equations.

3 Necessary Equations for Coefficient Determination

The equations developed in this section are all determined by the conditions in the previous section. They
arise from simply inserting the appropriate polynomial, (1) or (2), into either the interpolation, boundary or
diagonal conditions and equating appropriate coefficients. In this section z;; represents the elevation data at
the corner (3, j) of a cell. 2j; is the derivative with respect to r at (i, j) and zj; is the derivative with respect
to s at (4,7).

We first develop the equations that arise from the interpolation conditions. We will use (3) to develop
the coefficient relations that arise as a result of the interpolation at the unit cell corners. In particular, at
(0,0) simple substitutions show that

Do = 200, (9)
Cgo = 200, (10)
0(1)0 = 20 (11)
C?o = 200, (12)
081 = 200, (13)
081 = Z0o- (14)



At (1,0) the coeflicient relations are given by

0 0 0 0
€30 + €0 + C1p + Coo

1 1 1 1 o
Coz T Co2 T Co1 +Coo =
3cy +2¢5 +cly =

1 1
—C12 — €11 —

1
C10

0 0 0o _
Co1 tCi1 T =

1 1 1
—3ch3 — 2c2 — ¢t

At (0,1) the relations are

2 2 2 2 _
€39 T Co +C1p tCop =

3 3 3 3 _
Coz T Co2 T Co1 +Coo =

2 2 2
—3c59) —2c30 — g =

3 3 3
Cig t ¢ +¢p =

2

_621 — C

2 2
11 — €01

3chs + 2+ gy =

The last interpolation relations, given at (1, 1), are

0(1)0
C(2)0
C%o
C%o
051

2
Co1

At the external boundaries of the cells 0z/0x

to see that

0(2)1
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C§2
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is linear along the edges * = z; and x = z;41 of the
rectangle and the derivative 0z/0y is linear along the edges y = y; and y = y,+1. By differentiating (1) and
(2), evaluating them on the appropriate boundaries and setting the quadratic coefficients to zero it is easy
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The C! conditions along the diagonals are obtained by simply evaluating the relations (5), (6), (7), (8),
and equating the coefficients of like powers. Therefore, along s = r between triangle 0 and 3 we obtain the

equations

o+ By + Ay + s
o+ 1 + o
o+

080

3c3o + 269, + Yy

0 0
2¢50 +c11

3 3 3 3
C3p + Ca1 + C1g + Cp3

3 3 3
Cyo + €11 + Cp2

3 3
C1p + Co1

3
Coo

3¢y +2¢3; + ¢y

3 3
2¢5 + 11
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0

C10

cgl + 20(1)2 + 3083
0 0

i1+ 2cp

0
Co1

3
€10

= 3, +2c, + 3chs

3 3
€11+ 2¢p

3
= Co1

Along the line s = r, between triangles 1 and 2, we obtain

1 1 1 1
C39 T+ Cy1 + C1o + Cp3
3cho + 3¢y + 3ty + 3cds

1 1 1
+ Coo + C11 + Co2

—3c30 — 3ez1 — 3y — 3cgz — 2630

1 1 1 1
—2¢1; — 2¢ — €19 — €1

1 1 1 1 1 1

€30 + €31 + C1a + Co3z + C3p + €1y
1 1 1 1

+ Cp2 + €10 + Co1 T+ Coo

_301130 - 20%1 - 0%2
60%,0 + 4051 + 2(:%2 + 2cé0 + ch
_30}’,0 - 20%1 - 0}2 - 20%0 - 0%1 - C%o
—0%1 - 20%2 - 30(1)3
2c3, + 4dety + bcds + cly + 2¢ks
_0%1 - 20%2 - 30(1)3 - Cil - 20(1)2 - 0(1)1
Along the line s =1 — r, between triangles 0 and 1,

0 0 0 0
€309 — C21 T C12 — Co3

¢y — 269y + 3chz + 9y — by + s
5 — 303 + ) — 2chy + Yy — €y
ch3 + ¢ + o1 + o

3c3) — 2691 + Yy

2031 — 20(1)2 + 2030 — 0(1)1

Ay + ) + By

51 — 2605 + 3¢y

2cfy — 63 + ) — 2c0y

3cg3 + 2082 + c81

_ 2 2 2 2
= 30 T Cy1 T Clp + Cp3

= 3¢+ 3c3; + 3ciy

2 2 2 2
+3¢g3 + c5 + €11 + 52

_ 2 2 2 2
= —3c39 — 3¢5 — 3¢iy — 3¢h3

2 2 2 2 2
— 2¢5) — 2¢i; — 2¢pn — ¢1p — i

_ 2 2 2 2
= €39 T €31 +Cip + Cp3
2 2 2 2 2 2
+ 020 + Cll + 602 + CIO + COI + COO
_ 2 2 2
= —3c39 — 2¢3; — iy
2 2 2 2 2
6c3y + 4cyy + 2¢1y + 2659 + 1

_ 2 2 2 2 2 2
= —3c39 — 2¢3; — €l — 2¢30 — €11 — €1

2 2 2
—C31 — 2¢1y — 3¢p3

2 2 2 2 2
2C21 + 4612 + 6003 + C11 + 2002

_ 2 2 2 2 2 2
= —Cy; — 2¢79 — 3¢z — €11 — 2¢50 — ¢

we obtain

= —co+ ¢y — cly + o3

= 3cz — 2c3; + cly + c30 — €l; + oo
= —3cg + ¢y — 250 + €1y — €10 + ¢y
= 30+ 0 + Clo + o

= =3¢z + 2051 — Ciy

= 60%0 — 2c§1 + 20%0 — c}l

= _3011’,0 - 20%0 - C%o

= —cél + 20}2 — 30(1)3

= 2c3 — 2c15 + €1 — 20y

_ 1 1 1
= —C€1 — €11 — Cp1

Finally, along the line s = 1 — r, between triangles 2 and 3, we obtain

—C30 + 31 — o+ B3

3c3) — 2¢5; + iy + Cho — 31 + B
—3c3) + 3 — 230+ &5, — Go + Gy
30+ 0 + o + o

—3030 + 2031 — cf2

2 2 2 2
ez — 2¢5; + 2¢59 — 1y

3 3 3 3
C3p — C31 T €12 — Cp3

_ 3 3 3 3 3 3
= Cy1 — 2¢ip +3¢p3 + ¢y — €11 + 2
3 3 3 3 3 3
Clg — 3Cpg + €11 — 2¢ha + Clp — ¢y
3 3 3 3
Co3 T Co2 + €1 + Coo

3c§0 — 2031 + ci’Q

_ 3 3 3 3
= 2¢y — 21y — ¢+ 2cy

AA,_\,_\
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D Gl W
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2 2 2 _ 3 3 3
—3c39 — 2¢30 — €l = Cip T 11+ €l

3 3 3
Cy1 — 2¢i9 + 3¢

3 3 3 3
2ciy — 6cp3 + €11 — 2¢p

\']
N

2 2 2
—Coq + 2612 — 3C03

2 2 2 2
2c31 — 2ciy +cfyp — 2¢p

2 2 2 _ 3 3 3
—C31 — €11 — o1 = 3¢z + 2¢50 + ¢y
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PN
(=23

4 Finding a Solution

There are sixty eight equations developed in the previous section, from (9) to (76), but only forty unknowns,
so we expect twenty eight redundant equations. Of the forty unknowns sixteen are immediately determined
from equations (9) through (32) and (27) through (36). With these given, it is necessary to find the other
twenty four solvable equations and test that the rest of the equations are redundant. Some redundancies are
obvious. For example, equation (39) is redundant with (29) through (32), whereas other redundancies are
not so clear.

The first two equations that can be solved are (15) and (17) for ¢3, and ¢, in the form

0 0 0
cg0 = 3z10 — 219 — 2c19 — 3cgo

0o _ 0 0 0 0
€30 = 210 — €20 — €20 — €10 ~ €00 (77)

where 3, and ¢, are known from equations (9) and (11) respectively. The solutions given in this section
will be developed in terms of coefficients with either known values or previously computed values. The
representation of the coefficients in terms of the data at the four corners of the cell will be done in the next
section. That step of the process required the assistance of a symbolic manipulation program.

The second two equations that can be solved are (16) and (20) for c¢j, and cj5 as

1 s 1 1
002 == 3210 + 210 - 2001 - 3000

cos = #10 — Cha ~ 1 — Clo- (78)
The next two equations that can be solved are (21) and (23) for c3, and 3, as

30 = 3201+ 24 — 2ciy — 3¢chg

o = z01— o — o — o (79)
From (22) and (20) we can solve for c3, and ¢35 as

Coy = 3zo1 — 25 — 2¢3, — 3¢hy

s = 201~ o2~ o1~ Coo- (80)

Now we solve (19), (18), (25), and (24) for ¢J;, ci;, ¢34, and ¢3; respectively as

C(1)1 = 2 — 031 - 081

0%1 = —2ip— 0%2 - C%o

C?1 = —T4 — 031 - C(2)1 (81)
Ci)l = zp — Ci’z - Czl))O

Since 3y, ¢}, and c}; have been computed we can solve (42) for c3; as

1 1
o=+ 5091 - 50?1- (82)

Again, since ¢3;, ¢35, and c§; have been computed we can solve (45) for ¢, as

1 1
g = 50%1 + chy — 56(1)1‘ (83)



We can now solve (72) for c3; as

3

Co1 = (6C§0 —2¢3, + 25 — ¢}y +2c35 + ¢} — 20%0) (84)

N —

To solve for 3 insert (51) into (53) and cancel like terms in (53) to get
C20 = % (=t — et + 2¢50 + iy + o) (85)
To solve for c3,, multiply (47) by 3, insert the result into (49) and cancel like terms in (49) to get
Cho = % (230 + 2¢1y + 2¢02 + g + co1 — 2650 — 2¢f; — 1y — ¢By) (86)

To solve for ¥y, first solve (66) for ci; in terms of known values and the unknown cJ;, which will be
computed later, to get
1 1 1 0 0 0
Ca1 = —C11 — Co1 — 3C03 — 2Co2 — Co1- (87)

This is a temporary equation for c3; that will be used for substitution into (64). Once this substitution is
made, terms for ¢Js cancel in equation (64). The final result is

o _ 0 1 1 0 0 1 1
o = = (91 — ¢11 — cgy — 20, — €3y — 2¢1y + 3¢g3) (88)

where all of the terms on the right are known.
From (63) solve for ¢}, as

1
c30 = 3 (_2050 —clp— A2 — A1 — ‘310) (89)
From (61) solve for c3; as

1
chy = B (3030 —2c9; + ¥y + 3z + 0%2) (90)

From (66) we can now solve for c; as

1
083 -3 (_Cél - C%l - Cél - 2082 - 081) . (91)
From (41) solve for 3 as
1
o = 3 (380 + 2631 + sy — 265, — ¢f) - (92)
From (53) solve for c2, as
cfy = Bzt 2c3; + iy + 2c30 + c11 + ci

— 3¢5y — 2¢5; — 2¢30 — iy — cfo (93)
Finally, from (54) we can solve for c2; as

1
2y = 3 (c%l + 2¢hy + 3chs — 2 — 2c§2) . (94)
As is clear these coefficients were solved using a subset of the sixty eight equations. All of the other

equations are redundant. This has been verified by a symbolic manipulation program.



5 Representing the Coefficients in Terms of Corner Data

The coefficients can now be expanded in terms of the twelve data items at the corners of the unit square.

This again is done by a symbolic manipulation program. The results are given below.

0
Coo

200

200

200

200

200

200

Z11

211

21

—21

—z1

—21)

0

0

0

0

3210 - Z;O — 2Z60 — 3200
—2210 + 200 + 2200 + 219
3z10 + Zigo + 22‘191 — 3211
72210 — ZfO — Zfl + 2211
3z01 + 261 + 2211"1 —3z11
—2201 — 261 — Z{l + 2211
3201 - Zgl - 2250 - 3200

_2201 + 231 + Z(S)O + 2Z00

S S
210 — 200

' ™
211 ~ ?10

S S
211 — 201

' '
201 — 200
3 _7‘__7‘_3 +_S__S_1’I‘
210 — 210 2200 200 2Z10 2Z00 2Z01
1 1 3 1

' ' S S S
=201 — =200 + 3201 — 201 — =200 — 3200 — =%
5701 ~ 5700 01~ 5%00 5710

1 1
—3z01 — 201 — 211 + 3211 — §zf1 + 52’81 + 200

1 1
— 3210 + #1p + 3200 — =2i0 + 5280

2
3 1 1 1
5371"1 + 5371"0 + 3201 + 201 — 3211 + §Zf1 - §Z31
1 3
§Zf1 - §Zfo —3z11 + 5zf1 + 5281 + 3z10 + 21



Cl2 = _gzﬁ + 52;0 -z — 5261 + 5250 — 3201
+ 2’01 + ZOO + 3200 — — 3210 + 3211
1 1 1 1
1
C39 5271"1 - EZ{O — 201 — 5261 + 211 — 5260 — 200 + 210
1 T Il ]‘ S 1 S
¢ = —3z201— Zpr — 211 t+ 3z11 — 52’11 + 52’01
1
+ 200 — 3210 + 210 + 3200 — §Zfo + 5230
0 1 s 1 s S S
€3 = oL~ 21T 52t 5% T 210 T 200 5210 T 5 %00
1 1 1 1
C%O = Zpo+ 5260 — 211 + 527{1 —z10 + 527{0 + zo1 + 5261
1
2
Cla = —5251 + 5250 -z — 5261 + 5260 — 3201
+ 281 + ZSO + 3200 — Zfo — 3210 + 3211
1
c33 = —2z200— Zoo + 211 — 3 231 — 210

1 1
- §Zfo + 201 — 5231

6 Sibson Element Shape Functions on a Unit Cell

In this section we introduce the coefficients given in (95) into the appropriate polynomials (1) or (2) given
in Section 2. We will then rewrite the polynomials in the form of shape functions where the coefficients of
the twelve corner data items are polynomials, whose order does not exceed three. This is done by simply

rearranging the spatial and corner data in the polynomials (1) and (2) after substituting (95). The Sibson
element shape functions for each of the four triangles are given by

1 1
zo(rys) = (1 —3s2—3r2+ 53+ 23 + 31"32) Zoo + <r3 + 51‘52 —2r? — 552 + r> 200
1 3
+ (7"32 + 553 —rs— 532 + s> 250 + (—27"3 —3rs® + 55+ 37’2) 210
3, L 2 2\ 2, 13 L2\ s

+ (| —&—57“3 —r°) zjp+ | —7Ts +§s +rs—§s 210 (96)
1
2 2 2

1 1
+ (37’32 — 53) 211 + —57"32) 211 + <—7"52 + —s3> 271

+ (737"52 — 2+ 352) zo1 + <—7’52 + 152) 201 + (153 —s24 1"52) 25
2
z1(r,s) = (—(1 —r)¥ +3(1-7r)%1 - s)) 200 + (—%(1 —rP¥ 4+ (1 —-7r)21 - s)> 200
+ (%(1 —7)3(1 - s)) zho+ (L=7)2 =3(1=71)* (1 —s) —2(1 — 5)® + 3(1 — 5)?) 210

(2!
[l
+ (=(

+ (1—7)+(1—r)? (1—5)-1—%(1—7‘)2—(1—7")(1—3))zfo

(1—-7)2(1—s)— (1—5)3+(1—s)2>zio

—r)? =3(1—r)*(1 —s)+3(1—7)%) 201 (97)

»—\ [\Dl»—\ [\DIH

10



( %177' —(1-7 (15)+(17’)2> z61+(%(17')2(1s)%(17')2> 24
(L=7)P+3(1—7)21—s)+2(1—s)*—=3(1—7)2=3(1—5)>+1) 211

(1=r)® = (1—1)? (1—s)+g(1—r)2+(1—7«)(1_s)—(1—r)>z;1
(1-7r)21—=s)—(1—-3s)3

F =P 21— 5= (1~ s>> i

wa(rs) = (BL-r)(1—s)— (19 200+ (—(1 —n)(- s>2) 2o

(L= s = 30— sP ) sty (~A =)= 92 - -9+ (1= 92 2o

)
S Y (R (98)

H-1=r1=-8)?=S(1=5)°’+(1-r)(1-s) +5(1—5) (1—8))z11
3 2 3 2 2 13 2 3 2 r
z3(r,s) = (r + 3r<s + 2s° — 3r“ — 3s +1)Zoo+ 57" +r 5—57’ —rs+71 | 25

1, 3 1, 2 s 3 2 2

+ 5" s+r -5 — 25"+ zoo—i—(—r —3r s+37“)210
1 3 2 2 r 1 2 1 2 s

+ 3" +ris—r ) 2y + 57 s—i—ir Z1o (99)
3 2 3 2 13 2 1, r

+(r —3rs —2s +3s)201+ 57’ —r 5757’ +rs |z

1 1 1
+ <§r2s + 53 — 52> z + (- 3+ 3r s) z11 + (—r — 7"25) 21+ <—§T28> 271

7 Shape Functions on a Scaled Grid

In the previous sections we constructed the Sibson element shape functions on a unit square. In this section
we will extend this construction to rectangular grids with uniform spacings along the z and y axes. The
Sibson split for this grid spacing is given in Figure 2. The spacings, although uniform along each axis, need
not be the same for the = and y axes. In particular, let (z;, ;1+1) X (y;, y;+1) be a subrectangle in the overall
mesh. Since mesh spacings need not be uniform, let Az; = z;41 — z; and Ay; = y;+1 — y; Now we define

xr — X

ALEi

T =

11



06,

(Xi’yj+1)

\:3’<(:(>/<i+1+xi)/2,(yj+1+yj)/2) 2

(Xi+1ryj)

\\ (Xi+1lyj+1)

Figure 2: Rectangular Sibson Element

where z; <z < z;41 and y; < yj41. Then

and

By a similar argument

210
210
Z01
201
211

S
211

ox
or

0s

Y—Yj;
Ay

ij

%(wiayj)g = Az

0z 0 v

Y
a_y(xﬁyj)% = Ayj;z;;.

Aziziiy
Ay; Ziy+1,j
ATz j1
Ay
Aziziiy i

y
ijzz‘+1,j+1~
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(100)

(101)

(102)

(103)



Also

200 = Zij

210 = Zi+l,j5

200 = Zig41 (104)
211 = Ri41,54+1

With this notation the cubic shape functions for the unit element can be written in terms of (z,y) €
(@i, %i41) X (Y,Yj+1), where r and s are defined by (100).

1 1
20(z,y) = (1—382—3r2+s3+2r3+3rs2) zij + Ax; (r +§rs — 972 —53 —|—r>z]

1 3

+ Ay; <1"52 + 553 —7rs— 552 + s) zlyj + (727"3 —3rs? + 53+ 37‘2) Zig1,j
A 3 1 2 2 T A 1 1 2 Y

+ Az, | v —1—57‘5 =17 ) Zipy ;T AY; —rs? 4 s —|—rs—5s Zit1,j

1 1
+ (=3rs® — s° +35%) 25 j41 + Ay (—57‘82 + §s2> Zi i1 (105)

1
+ Ay, <§53 . TSQ) i+ (3rs® = 5°) ziv1 i

1 2 13
+ Ax; <—§r32> Zi1 j41 + Ay; (—rs +35s ) 2141

a(zy) = (-2 +301—7)2(1—s)) 2y
+A:L‘Z< ;1—7" (1—r)2(1—s)>z;g+ij (%(1—7«)2(1—3)) 2y,
+(1=7)* =31 —r)2(1—s) —2(1—5)>+3(1—5)?) zi41,
# o (<304 (=P8 + 500 - A=)
+ij( B0 =209 = (=84 (o) i,
=1)? =31 =1)* (1= s) +3(1—7)*) 21541
+Ax,< %1—7" (1—r)2(1—s)+(1—r)2) 2 i (106)
—&—AyJ(%l—r 1—5)—%(1—r)2>z§{j+1

(A=7)P+3(1—71)?1—s)+2(1—3s)°—3(1—7)>—3(1—5)>+1) 241,541

—&—Aw,( % 1-r)3—(1—-r) (1—8)+g(1—7”)2+(1—7‘)(1—8)—(1—’1")>Zf+1’j+1
+ Ay, ( S0 (1 5) (L= ) + S(1 = 4201~ )" - (1—s)> i
zo(z,y) = (3(1 -r)(1- 5)2 -(1- 8)3) zij + Az <%(1 —-r)(1- s)2> zfj

13



Zg(l',y)

+ (=31 =r)(1—5)*—(1—5)>+3(1—5)?) zi41,,
1 1 N
+ Az (5(1 —7)(1—5)* — 5(1 - 3)2> Zit1,j
# (<=9 - J0- 90 =02t
+ (20 =r)P =31 -r)(1—s)+(1—s)°+3(1—7)%) 2,41 (107)
+ Az, <—(1 —r)3 - %(1 —r)(1—s)*+(1- r)2) 27 i1
+ Ay; ((1 —r)(1—s)?— %(1 —8)2—(1—=r)1—s)+ %(1 — s)2> z i
+ (20 -r)P+31-r)1-5>+1—-5)°-31-7)>—=3(1—5)%+1) 211,41

+ Az, <—(1 —r)? - %(1 —r)(1—s)2+2(1—r)?+ %(1 — ) —(1— r)> 21 a1

+ Ay <_<1 S = (=) 4 (L) (1= 5) + (=) — (1~ s)) i

1 3
(r3 +3r2s+ 25 —3r2 — 352+ 1) zij + Ax; (57“3 +ris— 57“2 —rs+ r> zf]

1 1
+Ay; (57‘25 +73 = 57‘2 — 252 + s) zfj + (—r3 —3r?s + 37"2) Zit1,j

1 1 1
+Az; (57”3 +1r?s — 7“2) Ziv1 j + Ay (—57‘28 + 57“2> 21

1 1
+ (r® = 3r%s — 25 + 35%) 2 511 + Ay <—T3 —r?s — 57“2 + 7"5) Zij+1

2

1
+Ay; (57“25 +s3— 32> zf”j_,_l + (—7"3 + 37"23) Zit1,j+1

1 1
+Az; (57“3 - 7“28> Zip1 0 T AY; (‘57“25) 211541

8 Derivatives

(108)

Since Lavery [4] uses the first and second derivatives of the Sibson element splines in his interpolation and
approximation procedures, we will include both sets of derivatives in this section for completeness. Again

we will use the notation

o Tr — T;
r= AJIZ'
Yy—y;
s 109
Ay; (109)
and Az = z;41 — 3, Ay = yj+1 — y;. Then
o 1
o Az
0s 1
- - 110
dy Ay; (110)

14



8.1 First Derivatives

From the cubic splines for each of the triangles in a cell, given by (105), (106), (107), and (108), we can apply
the chain rule and (110) to compute the first partial derivatives. Direct computation gives the following.

82:0

oz

(z,y)

Ay;
A%i

(—s+ s°) zy;

1
Az, (—6r +6r% + 332) zij + <1 —dr +3r% + 532> zf] +

1 1 Ay,
Az (6r —6r% —35%) zip1; + <—27“ +3r% + 552> Ziv1y T A—xji (s =5%) 2ty
1 1 - Ay
JrAxi (=38%) 2 j41 + <§sz) Z e+ A—sz (s%) 2 i (111)

Ay;

1 (5.2 1o G2
+Awi (35%) zit1541 + <—§5 >Zf+1,j+1 + Az, (=5%) 21150

1 Ax; 3
Ay (=65 + 6rs + 3s?) zij+A—;j(—s—|—7“s) zj; + (1—r—3s+2rs—|—552> z;

1 Az 3
+A_yj (—67’3 + 332) Zig1,5 + A—y; (rs) 2y ; + <7’ —s—2rs+ 552) zzﬂ_l,j

1 2 .. & _ x _ § 2 Y
—|—ij (65 6rs — 3s )Zw+1 + Ay, (s—7rs)zijp1+ < 25 4 2rs + 5° )zi’jJrl (112)
1 2 Az; z 3 5
+A_yj (6rs —35%) zig1j41 + Ay, (=78) 21541 + (_27"5 T3 > 2141
L B —r? 601 —r) (1)) 2y + (20— 20— r)(1—s)) "
AIi K 2 )
Si(_(1-n)a AN 70 R C ST R 1
v (—(L=r)(1—s)) 2} + Az (—3(1 = )% +6(1—r)(1 - 5)) 211,
3 2 T ij Yy
+{-1-r)+ 5(1 =) +(1=s) =21 —7)(L—s) | 251 + N (A=r)(1=s))z{1y
1
T AL (=6(1=7)+3(1=r)> +6(1—r)(1 —5)) zi41 (113)
3 2 T Ay] y
(20— 2= - 9) 2+ 2L (=) - (=) - ),
1
+Axi (6(1 —r)—3(1- 7”)2 —6(L—7r)(1 - 5)) Zit1,j+1
3
(1-s0-n+ 00— am 9 20 -0 -9) e
Ay,
+A—IEJ¢ (=) + 1A =r)1=5)) 24141
IR AV T N At P N S SCA W
Ay, (=3(1—7r)?) zi5 + Ay, (—(1—r) )zij-i-( 2(1 r?) 2

+A—yj (B(1—r)?—6(1—s)+6(1—5)%) 211, + i—z (T=r) =1 =r)?)zf

1 1
+ (5(1 —r)? —2(1—s)+3(1— s)2> 2l + Ay (3(1 =1)?) zij+1

15



823 o
c’)—z(x’y) =

Ax; = 1
Ay (1 =r)?) 2l + (5(1 - 7")2> i (114)
Axi

ij

+— (=3(1—7)2 +6(1—8) —6(1—8)?) zit1,j41 + (—(1=7)+(1-1)?) 21 41

1
+ (1 + 5(1 —r)? —4(1—s)+3(1— s)2> 2l 1

1 1 A
(o) s (R ) B ) 2
1 1 . Ay;
+Ami (8(1—5)?) zip1,5 + (—5(1 — s)2> 25+ A—J (1=9)?%) 2/,
1 1
g (P60 =) +6(1 =) +3(1 = 5)%) 251 + (—2(1 —r) 43—+ 51— s)2> i
ij 2 y 1 2 2
t AL (T=s)=(1—9)?)2¢;, + Aa (6(1—r)—6(1—r)°=3(1—5)°) zit1,541 (115)

+ (1 —4(1-7)+3(1 -7+ 5(1 - 3)2> Zip1j41 T A—xi (—(1=s5)+ (1 =9)?) 21 1

Aiyj (—6(1—r)(1—s)+3(1—5)%) 25 + i_;; (=1 =r)(1—s)) 2

+ (2(1 —r)(1—s)+ g(l - s)2> z5+ Aiyj (—6(1—8)+6(1—7)(1—8)+3(1—35)?) zit1,

+Ay]: (T=s5) = (A=) —5) iy, + <—2(1 —8)+2(1—r)(1—s)+ g(l — s)2> By
+ (6(1 -r)(1—-s)—3(1- 3)2) Zij4+1 + i—zj (I=7r)(1-y9)) zf’jﬂ (116)

A.’L‘i .
+A—yj (—(L =)+ (1 —r)(1—=9)) 2141

+ (1 —(1-7r)=31-s)+2(1—-r)(1—s)+ ;(1 —s)2> zf’+17j+l

Ay;
AIi

3
(=67 + 3r% + 67s) 255 + (1 —3r+ 57“2 —s+ 27“3) zi; + (=r +1s) 2

AIi

L
A.CL’i

Al‘i

3

_|_

1
(r—rs)z\,;+ A (3r* — 67s) 2; 411

3 A
+ (r + 57‘2 +s— 2rs> Zijp1t A_ij (rs) 2 ;1 (117)
A

1 3 Y
+Axi (—37«2 +675) Zit1 41 + (573 — 2rs> 2141+ A_le (—rs) zf’+17j+1
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0z3 Ax;
1 1 Az,
1 —r?— 4 3 2 ~ 3 i ; 2 (p2) 5T
+( s s>z RERTSNP T
1 1
i <_§T2> gt A (=3r% + 65 — 657) 2,511 (118)
j
Axi 2 1 2 2 1
- z. —rs—2 3 3 i1
Jrij (T r )Zerl + <2T s+ 3s zj+1 + Ay; ( r )Z+1,J+1
Az,

j 1
2 2
Ay, (=r%) 21500 + <—§7' )Z?+1,j+1

8.2 Second Derivatives

In this section only those terms with nonzero coeflicients will be written out. Thus all coefficients of corner
data items that are zero will not be included in the second derivative expansions.

82,20( ) = 1 (6+12)--+L( A6
a2 YT Az? ")z Az; )%
1
+A$2 (6 — 127’) Zit1,j + —— N ( 2+ 67‘) Zii1,j (119)
i [
%2 1 1 1
_ = — (6 i - Z — (=1 2 Yy
ayax (:r’7y) AmszJ ( S) Z] + Ay] (S) Z’L] + sz' ( + S) Zz]
1 1 - 1
+4Awiij (—65) ziy1,5 + Ay (8) 21,y + Az (1—2s)2{
1 1 "
+A—xiij (—65) zij+1 + Ay (=8) zij41 (120)
1 1
+A$ (28) ’L ,J+1 t A.’L‘lA (68) zi+17j+1
1 1
+A—y3 (_ ) 'L+1 Jj+1 + A{Ez ( 25) szrl
822’0 1 Ax
ayg(ay) = Ay?( 6+6T‘+68)Z” A2( 1+ ) Z]
1 1
+E( 3+2r+38)z§’j+A—y2(—6r+63) Zit1,j
J J
Al‘i T 1
+_Ay2 (r) Zig1; Ay; (=1 —2r + 3s) 2/ 20
J
1 Az; .
+_Ay2- (6 —6r —6s) 2 ;11 + Ay 2 ( —7) 2 i1 (121)
J

1
+— ( 24 2r+ 38) z]—i—l + F (67’ - 65) Zi4+1,5+1
Y

1
-— 2r +3s) 27 ;
+ijz( 7))z T A Ay; (=27 +35) 24 j 11
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(9221

axQ (x?y) =
02z
3 al( ) =
Yyoxr
(9221
ayQ (fL‘,y) -
8222
85132 (xay) -
0%z
2( ) ) =
Oyox
822’2
ayg (x,y) -

S (260 = 1) 4601 =) 2y + 5 (31— 1)+ 2(1 = ) 5
+2§% (1 =) 25 + Al 2 (6(1—7) —6(1 —8)) zis1,

(1= 31— )+ 21 = 8) =+ 5 (1= 9)

1 1 i
+—Amf (6—6(1—7r)—6(1—39)) 2z +1+ Az (2=3(1-r)—2(1-3))2 ;11

(122)

(123)

(124)

+§zg (—1+ (1 =8) 2,0 + Afo (=6+6(1L—7)+6(1—s5))zit1541
R (B8 =) =21 = ) i + 55 (1= (1= 9)

L (61— 7)) 23y + o (21— 1)) 2+ (1= 7)) 2
Az;Ay; Ay, T Az, J
gy (00 =) zviny g (120 M)y g (<0 ) e
* Ry (O =M+ g (2 =) s+ 2 (=)
+Axi1ij (6(1 — 7)) zit1,541 + Aiyj (1 =20 =7)) 2fy ju1 + AL% (—(1-7)) z}”jﬂ
ﬁ (6~ 1201 = ) sy + 5o (2= 601 9) 2t
Aiy? (=64 12(1 — 8)) 241541 + Aiyj (4-6(1 - 8)) 21 o1

1 1 .
N (6 —12(1 —7)) zj j41+— Az, (2 —6(1—r1)) Zi i+

%

1 1 @
A2 (=6 +12(1 = 7)) 241, N (4=6(1—7)) 2 41

%

(125)

(126)

: ! A S
Ax; Ay, (61 =) zi; + Ay, (U= 9)) 2 + 7, G =)=
T AuiAy; (=6(1 = s)) zit1,; + Ay (1—s8))2fy,; + A (—2(1—8)) 2%,
+Awiij (=6(1 = 8)) zij+1 + Ay (—(1=8))2f; 1+ Az, (—1+2(1—8)2¥;,4
1 1 1
* AeiAy; (6(1 = 8)) zit1,54+1 + 2y (~(A=s) &g+ 5, (- 201 - 9)) i
1 Ax; .
A—ng (6(1—7)—6(1—s))2i;+ Ay 2 (Q=r)) Zij
1 v 1
+A_yj (2(1—1")—3(1—8)) +A_3/]2(6_6(1_T)_6(1_8)) Zitl,j
Al‘i
+ij2 (“1+Q—r))zf,,; + Ay, (2-20-7r)=3(1—s) 2},
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A.’L‘i

1 T
s (2601 = ) +6(1 = ) 51 + 5 (=) 2
j j
1 1
+Ay' (1+2(1—7r)—3(1—s))z/ a1t Ay 2 (=64+6(1—7)+6(1—s5))zit1,j41
Az, 1
+Ay; (=1 =7) 2+ A—yJ (B-2(1—-r)=3(1-s) Zg+1,j+1
j
0?25 1 1 Ay
W(m,y) = A7 (=64 67+ 65) 2;; + Az (=3 +3r+2s) 25 + —A:CJQ (—1+s)2!
1 1 Ay
t A (6 —6r —6s)zit1,; + — Az (=2 +3r+2s) 274 ; + Ay 32 (L-5)2l\1;
K3
1 1 - Ay,
Jr_sz (6r — 6s) Zij41 + S Az, (=1+3r— )Zi,jJrl =+ A_jg (s) sz+1
1 1 Ay
T A2 (=61 4 65) zi+1,541 + Az, (37 = 28) 2’1 j41 + Az J2 (=8) 241,11
0223 1 1 1
= (6r) 2y 142 v
8y8$(m’y) szAy] ( 7') Zl] + ij ( + T) AIII ( )zj
1 1 1
+7Axiij (—67) Zit1,5 + — Ay, (2r) 21 5 + Ar, (=) 21
1 1 , 1,
+m (=67) zij+1 + Ay (1=2r)2f; 1 + Az (r) 211
1 1 1
+m (6r) zit1,5+1 + A_y] (=2r) 2i1 j1 + Az, (—r) zzj+1
0%z3 1 1
°= = 125) 25 + —— (—4 y
dy2 (z,9) A ( 6+ S)Z]+ij( +68)ZU
1
+Ay]2 (6 —12s) 2 j41 + — Ay, (=2+6s)zf; 4
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